Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens
نویسندگان
چکیده
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.
منابع مشابه
Anaerobic benzene oxidation by Geobacter species.
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which the...
متن کاملNecessity of electrically conductive pili for methanogenesis with magnetite stimulation
Background Magnetite-mediated direct interspecies electron transfer (DIET) between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite ha...
متن کاملLink between capacity for current production and syntrophic growth in Geobacter species
Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm(2)), comparable to G. sulfurreducens. G....
متن کاملDirect interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric...
متن کاملPromoting direct interspecies electron transfer with activated carbon
Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and m...
متن کامل